Willett, W. et al. Food in the anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

Article 

Google Scholar 

Amine, E. K. et al. Food and Agriculture Organization of United Nations (FAO). Diet, Nutrition and the Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series 916 (WHO, 2003).

Micha, R. et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 5, e008705 (2015).

Article 

Google Scholar 

Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1211–1259 (2017).

Miller, V. et al. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: findings from the prospective urban rural epidemiology (PURE) study. Lancet Glob. Health 4, e695–e703 (2016).

Article 

Google Scholar 

Hall, J. N. et al. Global variability in fruit and vegetable consumption. Am. J. Prev. Med. 36, 402–409.e5 (2009).

Article 

Google Scholar 

Kalmpourtzidou, A., Eilander, A. & Talsma, E. F. Global vegetable intake and supply compared to recommendations: a systematic review. Nutrients 12, 1558 (2020).

Article 

Google Scholar 

Lee, S. H. et al. Adults meeting fruit and vegetable intake recommendations – United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 71, 1–9 (2022).

Article 

Google Scholar 

Syed, R. U. et al. Broccoli: a multi-faceted vegetable for health: an in-depth review of its nutritional attributes, antimicrobial abilities, and anti-inflammatory properties. Antibiotics 12, 1157 (2023).

Article 

Google Scholar 

Krishnaswamy, K. & Nair, K. M. Importance of folate in human nutrition. Br. J. Nutr. 85, S115–S124 (2001).

Article 

Google Scholar 

Kim, J. S. et al. Antioxidant and antiproliferative activities of solvent fractions of broccoli (Brassica oleracea L.) sprout. Appl. Biol. Chem. 65, 34 (2022).

Article 

Google Scholar 

Favela-González, K. M., Hernández-Almanza, A. Y. & De la Fuente-Salcido, N. M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: a review. J. Food Biochem. 44, e13414 (2020).

Article 

Google Scholar 

López-Chillón, M. T. et al. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin. Nutr. 38, 745–752 (2019).

Article 

Google Scholar 

Hwang, J.-H. & Lim, S.-B. Antioxidant and anti-inflammatory activities of broccoli florets in LPS-stimulated RAW 264.7 cells. Prev. Nutr. Food Sci. 19, 89 (2014).

Article 

Google Scholar 

Borgi, L. et al. Fruit and vegetable consumption and the Incidence of hypertension in three prospective cohort studies. Hypertension 67, 288–293 (2016).

Article 

Google Scholar 

Li, N. et al. Cruciferous vegetable and isothiocyanate intake and multiple health outcomes. Food Chem. 375, 131816 (2022).

Article 

Google Scholar 

Jabbarzadeh Kaboli, P. et al. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer – contradictory effects and future perspectives. Biomed. Pharmacother. 121, 109635 (2020).

Article 

Google Scholar 

Ishida, M. et al. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Sci 64, 48–59 (2014).

Article 

Google Scholar 

Liang, H., Lai, B. & Yuan, Q. Sulforaphane induces cell-cycle arrest and apoptosis in cultured human lung adenocarcinoma LTEP-A2 cells and retards growth of LTEP-A2 xenografts in vivo. J. Nat. Prod. 71, 1911–1914 (2008).

Article 

Google Scholar 

Zhang, Y. & Tang, L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical 1. Acta Pharmacol. Sin. 28, 1343–1354 (2007).

Article 

Google Scholar 

Liu, C. et al. Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. PeerJ 8, e8870 (2020).

Article 

Google Scholar 

Pojer, E. et al. The case for anthocyanin consumption to promote human health: a review. Compr. Rev. Food Sci. Food Saf. 12, 483–508 (2013).

Article 

Google Scholar 

Fuglie, K. O. & Echeverria, R. G. The economic impact of CGIAR-related crop technologies on agricultural productivity in developing countries, 1961–2020. World Dev, 176, 106523 (2024).

Article 

Google Scholar 

Baffes, J. & Mekonnen, D. Risks and challenges in global agricultural markets. Let’s Talk Development. https://blogs.worldbank.org/en/developmenttalk/risks-and-challenges-in-global-agricultural-markets. (2025).

de Wit, C. T. Resource use efficiency in agriculture. Agric. Syst. 40, 125–151 (1992).

Article 

Google Scholar 

de Wit, C. T. The efficient use of labour, land and energy in agriculture. Agric. Syst. 4, 279–287 (1979).

Article 

Google Scholar 

Campi, M., Due¤as, M. & Fagiolo, G. Specialization in food production affects global food security and food systems sustainability. World Dev. 41, 105411 (2021).

Article 

Google Scholar 

Sanders, T. A. Food production and food safety. BMJ 318, 1689–1693, https://doi.org/10.1136/bmj.318.7199.1689 (1999).

Article 

Google Scholar 

Tilman, D. et al. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108, 20260–20264 (2011).

Article 

Google Scholar 

Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 104, 19703–19708 (2007).

Article 

Google Scholar 

Kerr, A. et al. Vulnerability of California specialty crops to projected mid-century temperature changes. Clim. Chang. 148, 419–436 (2018).

Article 

Google Scholar 

Water scarcity: Impacts on Western Agriculture (eds Engelbert, E. A. & Scheuring, A. F.) 516 (Univ. California Press, 2022).

Pathak, T. B. et al. Climate change trends and impacts on California agriculture: a detailed review. Agronomy 8, 25 (2018).

Article 

Google Scholar 

Treadwell, D. D. et al. Transitioning away from fossil fuels will drive repositioning of horticulture. HortScience 59, 561–564 (2024).

Article 

Google Scholar 

Volpe, R., Roeger, E. & Leibtag, E. How Transportation Costs Affect Fresh Fruit and Vegetable Prices. ERR-160 (U.S. Department of Agriculture, Economic Research Service, 2013).

Dai, B. et al. Changes in the supply chain outcomes of food regionalization, 2007–2017: Broccoli in the eastern United States. PLoS ONE 18, e0287691 (2023).

Article 

Google Scholar 

Tort, ÖÖ, Vayvay, Ö & Çobanoğlu, E. A systematic review of sustainable fresh fruit and vegetable supply chains. Sustainability 14, 1573 (2022).

Article 

Google Scholar 

Verkerk, R. et al. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 53, S219 (2009).

Article 

Google Scholar 

Khazaeli, S., Kalvandi, R. & Sahebi, H. A multi-level multi-product supply chain network design of vegetables products considering costs of quality: a case study. PLoS ONE 19, e0303054 (2024).

Article 

Google Scholar 

Canals, L. M. et al. Life Cycle Assessment (LCA) of Domestic vs. Imported Vegetables. Case Studies on Broccoli, Salad Crops and Green Beans. RELU Project REW-224-25-0044 (Centre for Environmental Strategy, University of Surrey, UK, 2008).

Dodman, D. et al. In Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner H.-O. et al.) 907–1040 (Cambridge Univ. Press, 2022).

Moustier, P. & Danso, G. K. in Cities Farming for the Future: Urban Agriculture for Green and Productive Cities (ed. Van Veenhuizen, R.) 1–23. (International Development Research Centre, 2006).

Dumont, A. The economic impact of locally produced food. St. Louis Fed On the Economy https://www.stlouisfed.org/on-the-economy/2017/december/economic-impact-locally-produced-food (USA, 2017).

Verified Market Research. Global fresh broccoli market size by type, by end-user, by certification, by harvest type, by geographic scope and forecast. https://www.verifiedmarketresearch.com/product/fresh-broccoli-market/ (2024).

Davis, D. R., Epp, M. D. & Riordan, H. D. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J. Am. Coll. Nutr. 23, 669–682 (2004).

Article 

Google Scholar 

Xiong, W. et al. Increased ranking change in wheat breeding under climate change. Nat. Plants 7, 1207–1212 (2021).

Article 

Google Scholar 

Zhao, F. J. et al. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 49, 290–295 (2009).

Article 

Google Scholar 

Pleijel, H. et al. Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agric. Ecosyst. Envir. 72, 265–270 (1999).

Article 

Google Scholar 

Dorais, M., Ehret, D. & Papadopoulos, A. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem. Rev. 7, 231–250 (2008).

Article 

Google Scholar 

Simkova, K. et al. Berry size and weight as factors influencing the chemical composition of strawberry fruit. J. Food Compos. Anal. 123, 105509 (2023).

Article 

Google Scholar 

Branham, S. E. & Farnham, M. W. Identification of heat tolerance loci in broccoli through bulked segregant analysis using whole genome resequencing. Euphytica 215, 1–9 (2019).

Article 

Google Scholar 

Branham, S. E. et al. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theor. Appl. Genet. 130, 529–538 (2017).

Article 

Google Scholar 

Grevsen, K. & Olesen, J. Modelling development of broccoli (Brassica oleracea L. var. italica) from transplanting to head initiation. J. Hort. Sci. Biotechnol. 74, 698–705 (1999).

Article 

Google Scholar 

Kage, H., Kochler, M. & Stützel, H. Root growth of cauliflower (Brassica oleracea L. botrytis) under unstressed conditions: measurement and modelling. Plant Soil 223, 133–147 (2000).

Article 

Google Scholar 

Alan, A. R. et al. in Doubled Haploid Technology: Volume 2: Hot Topics, Apiaceae, Brassicaceae, Solanaceae (ed. Segui-Simarro J. M.) 201–216 (Springer, 2021).

Farnham, M. W. Doubled-haploid broccoli production using anther culture: effect of anther source and seed set characteristics of derived lines. J. Am. Soc. Hortic. Sci. 123, 73–77 (1998).

Article 

Google Scholar 

Jiang, Y. & Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: a review. Plant Phenomics 2020, 4152816 (2020).

Article 

Google Scholar 

Farnham, M. W. & Björkman, T. Evaluation of experimental broccoli hybrids developed for summer production in the eastern United States. HortScience 46, 858–863 (2011).

Article 

Google Scholar 

Persa, R. et al. Improving predictive ability in sparse testing designs in soybean populations. Front. Genet. 14, 1269255 (2023).

Article 

Google Scholar 

Cooper, M. & Messina, C. D. Breeding crops for drought-affected environments and improved climate resilience. Plant Cell 35, 162–186 (2023).

Article 

Google Scholar 

Messina, C. et al. Toward a general framework for AI-enabled prediction in crop improvement. Theor. Appl. Genet. 138, 151 (2025).

Article 

Google Scholar 

Simmons, C. R. et al. Successes and insights of an industry biotech program to enhance maize agronomic traits. Plant Sci 307, 110899 (2021).

Article 

Google Scholar 

Bevan, M. W. et al. Genomic innovation for crop improvement. Nature 543, 346–354 (2017).

Article 

Google Scholar 

Cooper, M., Tomura, S., Wilkinson, M. J., Powell, O. & Messina, C. D. Breeding perspectives on tackling trait genome-to-phenome (G2P) dimensionality using ensemble-based genomic prediction. Theor. Appl. Genet. 138, 172 (2025).

Article 

Google Scholar 

Millet, E. J. et al. Genomic prediction of maize yield across European environmental conditions. Nat Genet 51, 952–956 (2019).

Article 

Google Scholar 

Messina, C. D. et al. Crop improvement for circular bioeconomy systems. J. ASABE 65, 491–504 (2022).

Article 

Google Scholar 

Messina, C. D. et al. Yield–trait performance landscapes: from theory to application in breeding maize for drought tolerance. J. Exp. Bot. 62, 855–868 (2011).

Article 

Google Scholar 

Cooper, M. et al. Modelling selection response in plant-breeding programs using crop models as mechanistic gene-to-phenotype (CGM-G2P) multi-trait link functions. In silico Plants, 2020 3, diaa016 (2021).

Article 

Google Scholar 

Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).

Article 

Google Scholar 

Jumper, J. & Hassabis, D. Protein structure predictions to atomic accuracy with AlphaFold. Nat. Methods 19, 11–12 (2022).

Article 

Google Scholar 

Sulis, D. B. et al. Multiplex CRISPR editing of wood for sustainable fiber production. Science 381, 216–221 (2023).

Article 

Google Scholar 

McCarty, N. S. et al. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).

Article 

Google Scholar 

Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

Article 

Google Scholar 

Uranga, M. et al. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Plant J. 106, 555–565 (2021).

Article 

Google Scholar 

Khakhar, A. & Voytas D. F. RNA viral vectors for accelerating plant synthetic biology. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.668580 (2021).

Shen, Y. et al. Exploiting viral vectors to deliver genome editing reagents in plants. aBIOTECH 5, 247–261 (2024).

Article 

Google Scholar 

Kim, Y.-C. et al. Development of glucoraphanin-rich broccoli (Brassica oleracea var. italica) by CRISPR/Cas9-mediated DNA-free BolMYB28 editing. Plant Biotechnol. Rep. 16, 123–132 (2022).

Article 

Google Scholar 

Mitreiter, S. & Gigolashvili, T. Regulation of glucosinolate biosynthesis. J. Exp. Bot. 72, 70–91 (2020).

Article 

Google Scholar 

Cao, Y. et al. Transcriptional regulation of flavonol biosynthesis in plants. Hort. Resear. 11, uhae043 (2024).

Article 

Google Scholar 

Sami, A. et al. Genetics aspect of vitamin C (Ascorbic Acid) biosynthesis and signaling pathways in fruits and vegetables crops. Funct. Integr. Genomics 24, 73 (2024).

Article 

Google Scholar 

Wu, G. et al. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat. Biotechnol 23, 1013–1017 (2005).

Article 

Google Scholar 

Ruiz-López, N. et al. Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Res. 21, 1233–1243 (2012).

Article 

Google Scholar 

Liu, C. et al. Identification of major loci and candidate genes for anthocyanin biosynthesis in broccoli using QTL-Seq. Horticulturae https://doi.org/10.3390/horticulturae7080246 (2021).

Xu, F. et al. Editing of ORF138 restores fertility of Ogura cytoplasmic male sterile broccoli via mitoTALENs. Plant Biotechnol. J. 22, 1325–1334 (2024).

Article 

Google Scholar 

Duijs, J. et al. Microspore culture is successful in most crop types of Brassica oleracea L. Euphytica 60, 45–55 (1992).

Article 

Google Scholar 

Keller, W. A. & Armstrong, K. C. Production of haploids via anther culture in Brassica oleracea var Italica. Euphytica 32, 151–159 (1983).

Article 

Google Scholar 

Sabadin, F. et al. Optimizing self-pollinated crop breeding employing genomic selection: from schemes to updating training sets. Front. Plant Sci. 13, 935885 (2022).

Article 

Google Scholar 

Heather, D. et al. Heat tolerance and holding ability in broccoli. J. Amer. Soc. Hort. Sci. 117, 887–892 (1992).

Article 

Google Scholar 

Björkman, T. & Pearson, K. J. High temperature arrest of inflorescence development in broccoli (Brassica oleracea var. italica L.). J. Exp. Bot. 49, 101–106 (1998).

Article 

Google Scholar 

Kałużewicz, A., Krzesiński, W. & Knaflewski, M. Effect of temperature on the yield and quality of broccoli heads. J. Fruit Ornam. Plant Res. 71, 51–58 (2009).

Article 

Google Scholar 

Wiebe, H. J. The morphological development of cauliflower and broccoli cultivars depending on temperature. Sci. Hortic. 3, 95–101 (1975).

Article 

Google Scholar 

Tan, D. K. Y. et al. Freeze-induced reduction of broccoli yield and quality. Aust. J. Exp. Agric. 39, 771–780 (2000).

Article 

Google Scholar 

Kałużewicz, A. et al. Effect of temperature on the growth of broccoli (Brassica oleracea L. var. italica Plenck) cv. Fiesta. J. Fruit Ornam. Plant Res. 77, 129–141 (2012).

Google Scholar 

Gauss, J. F. & Taylor, G. A. Environmental factors influencing reproductive differentiation and the subsequent formation of the inflorescence of Brassica olerácea L. var. itálica, Plenck cv.‘Coastal’. J. Amer. Soc. Hort. Sci. 94, 275–280 (1969).

Article 

Google Scholar 

Grevsen, K. Effects of temperature on head growth of broccoli (Brassica oleracea L. var. italica): Parameter estimates for a predictive model. J. Hort. Sci. Biotechnol. 73, 235–244 (1998).

Article 

Google Scholar 

Lin, Y. R. et al. Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Sci. Rep. 8, 13609 (2018).

Article 

Google Scholar 

Lin, C. W. et al. Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation. BMC Plant Biol. 19, 3 (2019).

Article 

Google Scholar 

Lin, C.-Y. et al. Collaborative expression of FLOWERING LOCUS C in heat-tolerant cauliflower. Fruits 78, 1–7 (2023).

Article 

Google Scholar 

Kinoshita, Y., Motoki, K. & Hosokawa, M. Upregulation of tandem duplicated BoFLC1 genes is associated with the non-flowering trait in Brassica oleracea var. capitata. Theor. Appl. Genet. 136, 41 (2023).

Article 

Google Scholar 

Farnham, M. W. & Bjorkman, T. Breeding vegetables adapted to high temperatures: a case study with broccoli. HortScience 46, 1093–1097 (2011).

Article 

Google Scholar 

Deng, W. et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl. Acad. Sci. USA 108, 6680–6685 (2011).

Article 

Google Scholar 

Technow, F., Podlich, D. & Cooper, M. Back to the future: implications of genetic complexity for the structure of hybrid breeding programs. G3 11, jkab153 (2021).

Article 

Google Scholar 

United Nations, D.o.E.a.S.A., Population Division. World Population Prospects 2024. Online Edition https://www.un.org/development/desa/pd/world-population-prospects-2024 (2024).

Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021) Cause-Specific Mortality 1990-2021 https://doi.org/10.6069/4fgf-3t54 (IHME USA, 2024).

Database, G. D., Global Dietary Intake Estimates https://globaldietarydatabase.org/available-gdd-2018-estimates-datafiles (2018).

Trade – Crops and Livestock Products. FAOSTAT Tech. Rep. (FAO, 2024)

Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269 (2009).

Article 

Google Scholar 

Comments are closed.

Pin