Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).
Google Scholar
Mansfield, J. et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 13, 614–629 (2012).
Google Scholar
Humphrey, P. T., Nguyen, T. T., Villalobos, M. M. & Whiteman, N. K. Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol. Ecol. 23, 1497–1515 (2014).
Google Scholar
Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis Thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).
Google Scholar
Ritpitakphong, U. et al. The Microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New. Phytol. 210, 1033–1043 (2016).
Google Scholar
De Zélicourt, A. et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto‐4‐methylthiobutyric acid production. PLOS Genet. 14, e1007273 (2018).
Google Scholar
Nakano, M., Omae, N. & Tsuda, K. Inter-organismal phytohormone networks in plant-microbe interactions. Curr. Opin. Plant. Biol. 68, 102258 (2022).
Google Scholar
Pang, Z. et al. Linking plant secondary metabolites and plant microbiomes: a review. Front. Plant. Sci. 12, 621276 (2021).
Google Scholar
Wang, Y., Pruitt, R. N., Nürnberger, T. & Wang, Y. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20, 449–464 (2022).
Google Scholar
Hammerbacher, A., Coutinho, T. A. & Gershenzon, J. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant. Cell. Environ. 42, 2827–2843 (2019).
Google Scholar
Crombie, A. T. et al. Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc. Natl. Acad. Sci. 115, 13081–13086 (2018).
Google Scholar
Eberl, F., Hammerbacher, A., Gershenzon, J. & Unsicker, S. B. Leaf rust infection reduces herbivore-induced volatile emission in black Poplar and attracts a generalist herbivore. New. Phytol. 220, 760–772 (2018).
Google Scholar
Schafer, H., Myronova, N. & Boden, R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61, 315–334 (2010).
Google Scholar
Bringel, F. & Couée, I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 06, 486 (2015).
Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).
Google Scholar
Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).
Google Scholar
Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).
Google Scholar
Aydogan, E. L., Moser, G., Müller, C., Kämpfer, P. & Glaeser, S. P. Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Front. Microbiol. 9, 144 (2018).
Google Scholar
Sangiorgio, D. et al. Host species and temperature drive Beech and Scots pine phyllosphere microbiota across European forests. Commun. Earth Environ. 5, 747 (2024).
Almario, J. et al. The leaf Microbiome of Arabidopsis displays reproducible dynamics and patterns throughout the growing season. mBio 13, e02825–e02821 (2022).
Google Scholar
Gaube, P., Junker, R. R. & Keller, A. Changes amid constancy: flower and leaf microbiomes along land use gradients and between bioregions. Basic. Appl. Ecol. 50, 1–15 (2021).
Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems 2, e00087–e00017 (2017).
Google Scholar
Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).
Google Scholar
Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).
Google Scholar
Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).
Google Scholar
Xiong, C. et al. Host selection shapes crop Microbiome assembly and network complexity. New. Phytol. 229, 1091–1104 (2021).
Google Scholar
Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a Neotropical forest. Proc. Natl. Acad. Sci. 111, 13715–13720 (2014).
Google Scholar
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).
Google Scholar
Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).
Google Scholar
Lee, G. W., Chung, M. S., Kang, M., Chung, B. Y. & Lee, S. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma 253, 683–690 (2016).
Google Scholar
Burdon, R. C. F., Junker, R. R., Scofield, D. G. & Parachnowitsch, A. L. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile Linalool. Chemoecology 28, 11–19 (2018).
Google Scholar
Riedlmeier, M. et al. Monoterpenes support systemic acquired resistance within and between plants. Plant. Cell. 29, 1440–1459 (2017).
Google Scholar
Abanda-Nkpwatt, D., Musch, M., Tschiersch, J., Boettner, M. & Schwab, W. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57, 4025–4032 (2006).
Google Scholar
DiGuistini, S. et al. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc. Natl. Acad. Sci. 108, 2504–2509 (2011).
Scala, A. et al. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front. Plant. Sci. 4, 74 (2013).
Google Scholar
Shen, Q., Liu, L., Wang, L. & Wang, Q. Indole primes plant defense against necrotrophic fungal pathogen infection. PLOS ONE. 13, e0207607 (2018).
Google Scholar
Gaube, P. et al. Inter- and intraspecific phytochemical variation correlate with epiphytic flower and leaf bacterial communities. Environ. Microbiol. 25, 1624–1643 (2023).
Google Scholar
Junker, R. R. et al. Composition of epiphytic bacterial communities differs on petals and leaves. Plant. Biol. 13, 918–924 (2011).
Google Scholar
Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New. Phytol. 220, 739–749 (2018).
Google Scholar
Fitzky, A. C. et al. Diversity and interrelations among the constitutive VOC emission blends of four broad-leaved tree species at seedling stage. Front. Plant. Sci. 12, 708711 (2021).
Google Scholar
Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. New. Phytol. 183, 27–51 (2009).
Google Scholar
Carslaw, K. S. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chem. Phys. 10, 1701–1737 (2010).
Google Scholar
Guenther, A. B. et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev. 5, 1471–1492 (2012).
Google Scholar
Matsunaga, S. N. et al. Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan. Chemosphere 87, 886–893 (2012).
Google Scholar
Miyama, T. et al. Seasonal changes in interclone variation following Ozone exposure on three major gene pools: an analysis of Cryptomeria Japonica clones. Atmosphere 10, 643 (2019).
Google Scholar
Hiura, T. et al. Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese Cedar. Sci. Rep. 11, 8307 (2021).
Google Scholar
Dada, L. et al. Role of sesquiterpenes in biogenic new particle formation. Sci. Adv. 9, eadi5297 (2023).
Google Scholar
Luo, Y. et al. Oxidation product characterization from ozonolysis of the diterpene ent-kaurene. Atmospheric Chem. Phys. 22, 5619–5637 (2022).
Google Scholar
Forestry Agency of Japan. 2011 Forestry Census (Forestry Agency, 2011).
Tsumura, Y. et al. Genetic differentiation and evolutionary adaptation in cryptomeria Japonica. G3 Genes|Genomes|Genetics. 4, 2389–2402 (2014).
Google Scholar
Moriguchi, N. et al. Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing. Heredity 123, 371–383 (2019).
Google Scholar
Tsumura, Y. et al. Effects of the last glacial period on genetic diversity and genetic differentiation in Cryptomeria Japonica in East Asia. Tree Genet. Genomes. 16, 19 (2020).
Ohta, T., Niwa, S. & Hiura, T. Geographical variation in Japanese Cedar shapes soil nutrient dynamics and invertebrate community. Plant. Soil. 437, 355–373 (2019).
Google Scholar
Azuma, W. A., Kawai, K., Tanabe, T., Nakahata, R. & Hiura, T. Intraspecific variation in growth-related traits—from leaf to whole‐tree—in three provenances of Cryptomeria Japonica canopy trees grown in a common garden. Ecol. Res. 38, 83–97 (2023).
Google Scholar
Nakahata, R., Azuma, W. A., Tanabe, T., Kawai, K. & Hiura, T. Genotypic variations appear in fine root morphological traits of Cryptomeria Japonica trees grown in a common garden. Ecol. Res. 39, 717–729 (2024).
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 4, 170122 (2017).
Google Scholar
Karger, D. et al. (ed, N.) Climatologies at high resolution for the earth’s land surface areas. EnviDat https://doi.org/10.16904/envidat.228 (2021).
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. Global climate-related predictors at Kilometer resolution for the past and future. Earth Syst. Sci. Data. 14, 5573–5603 (2022).
Google Scholar
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. CHELSA-BIOCLIM + A novel set of global climate-related predictors at kilometre-resolution. EnviDat https://doi.org/10.16904/envidat.332 (2022).
Kobayashi, T. Index of Fungi Inhabiting Woody Plants in Japan – Host, Distribution and Literature (Zenkoku-Noson-Kyoiku Kyokai, 2007).
Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).
Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant Microbiome variation. PLOS Biol. 14, e1002352 (2016).
Google Scholar
Bálint, M. et al. Host genotype shapes the foliar fungal Microbiome of Balsam Poplar (Populus Balsamifera). PLoS ONE. 8, e53987 (2013).
Google Scholar
Coince, A. et al. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS ONE. 9, e100668 (2014).
Google Scholar
Fukasawa, Y. & Matsuoka, S. Communities of wood-inhabiting fungi in dead pine logs along a geographical gradient in Japan. Fungal Ecol. 18, 75–82 (2015).
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Google Scholar
Junker, R. R., He, X., Otto, J. C., Ruiz-Hernández, V. & Hanusch, M. Divergent assembly processes? A comparison of the plant and soil Microbiome with plant communities in a glacier forefield. FEMS Microbiol. Ecol. 97, fiab135 (2021).
Google Scholar
Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).
Google Scholar
Nicolas, F. et al. Home-field advantage of litter decomposition: from the phyllosphere to the soil. New. Phytol. 231, 1353–1358 (2021).
Martin, D. M., Gershenzon, J. & Bohlmann, J. Induction of volatile terpene biosynthesis and diurnal emission by Methyl jasmonate in foliage of Norway Spruce. Plant. Physiol. 132, 1586–1599 (2003).
Google Scholar
Lee, J. H. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 19, 391–396 (2009).
Google Scholar
Pieterse, C. M. J., Poelman, E. H., Van Wees, S. C. M. & Dicke, M. Induced plant responses to microbes and insects. Front. Plant. Sci. 4, 475 (2013).
Google Scholar
Gupta, R. et al. Cytokinin drives assembly of the phyllosphere Microbiome and promotes disease resistance through structural and chemical cues. ISME J. 16, 122–137 (2022).
Google Scholar
Saito, T., Kusumoto, N. & Hiura, T. Relation of leaf terpene contents to terpene emission profiles in Japanese Cedar (Cryptomeria japonica). Ecol. Res. 38, 74–82 (2023).
Google Scholar
Rodrigues, M. G. & Fonseca, Á. Molecular systematics of the dimorphic ascomycete genus Taphrina. Int. J. Syst. Evol. Microbiol. 53, 607–616 (2003).
Google Scholar
Tsai, I. J. et al. Comparative genomics of Taphrina fungi causing varying degrees of tumorous deformity in plants. Genome Biol. Evol. 6, 861–872 (2014).
Google Scholar
Vacher, C. et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).
Peay, K. G., Bruns, T. D., Kennedy, P. G., Bergemann, S. E. & Garbelotto, M. A strong species–area relationship for eukaryotic soil microbes: Island size matters for ectomycorrhizal fungi. Ecol. Lett. 10, 470–480 (2007).
Google Scholar
Van Der Gucht, K. et al. The power of species sorting: local factors drive bacterial community composition over a wide range of Spatial scales. Proc. Natl. Acad. Sci. 104, 20404–20409 (2007).
Google Scholar
Jumpponen, A. & Jones, K. L. Seasonally dynamic fungal communities in the Quercus Macrocarpa phyllosphere differ between urban and nonurban environments. New. Phytol. 186, 496–513 (2010).
Google Scholar
Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change. 5, 424–430 (2015).
Google Scholar
Intergovernmental Panel On Climate Change (Ipcc). Climate Change 2021 – the Physical Science Basis: Working Group I Contribution To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023). https://doi.org/10.1017/9781009157896
Tsumura, Y. Genetic structure and local adaptation in natural forests of Cryptomeria Japonica. Ecol. Res. 38, 64–73 (2023).
Google Scholar
Tian, X. et al. Template Preparation affects 16S rRNA high-throughput sequencing analysis of phyllosphere microbial communities. Front. Plant. Sci. 8, 1623 (2017).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods. 10, 999–1002 (2013).
Google Scholar
Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).
Google Scholar
Tedersoo, L. & Lindahl, B. Fungal identification biases in Microbiome projects. Environ. Microbiol. Rep. 8, 774–779 (2016).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Callahan, B. J. et al. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583 (2016).
Google Scholar
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
Google Scholar
Robeson, M. S. et al. RESCRIPt: reproducible sequence taxonomy reference database management. PLOS Comput. Biol. 17, e1009581 (2021).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
Google Scholar
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
Abarenkov, K. et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res. 52, D791–D797 (2024).
Google Scholar
Ortega, J. & Helmig, D. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part A. Chemosphere 72, 343–364 (2008).
Google Scholar
Gu, H., Liu, G., Wang, J., Aubry, A. F. & Arnold, M. E. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. Anal. Chem. 86, 8959–8966 (2014).
Google Scholar
Matsunaga, S. N. et al. Monoterpene and sesquiterpene emissions from Sugi (Cryptomeria japonica) based on a branch enclosure measurements. Atmospheric Pollut Res. 2, 16–23 (2011).
Google Scholar
R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024). https://www.R-project.org/
Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).
Google Scholar
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of Microbiome census data. PLoS ONE. 8, e61217 (2013).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package, Version 2.6-8. https://cran.r-project.org/package=vegan (2024).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Montassier, E. et al. CLOUD: a non-parametric detection test for Microbiome outliers. Microbiome 6, 137 (2018).
Google Scholar
Comments are closed.