Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

CAS 
PubMed 

Google Scholar 

Mansfield, J. et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 13, 614–629 (2012).

PubMed 
PubMed Central 

Google Scholar 

Humphrey, P. T., Nguyen, T. T., Villalobos, M. M. & Whiteman, N. K. Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol. Ecol. 23, 1497–1515 (2014).

CAS 
PubMed 

Google Scholar 

Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis Thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ritpitakphong, U. et al. The Microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New. Phytol. 210, 1033–1043 (2016).

CAS 
PubMed 

Google Scholar 

De Zélicourt, A. et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto‐4‐methylthiobutyric acid production. PLOS Genet. 14, e1007273 (2018).

PubMed 
PubMed Central 

Google Scholar 

Nakano, M., Omae, N. & Tsuda, K. Inter-organismal phytohormone networks in plant-microbe interactions. Curr. Opin. Plant. Biol. 68, 102258 (2022).

CAS 
PubMed 

Google Scholar 

Pang, Z. et al. Linking plant secondary metabolites and plant microbiomes: a review. Front. Plant. Sci. 12, 621276 (2021).

PubMed 
PubMed Central 

Google Scholar 

Wang, Y., Pruitt, R. N., Nürnberger, T. & Wang, Y. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20, 449–464 (2022).

CAS 
PubMed 

Google Scholar 

Hammerbacher, A., Coutinho, T. A. & Gershenzon, J. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant. Cell. Environ. 42, 2827–2843 (2019).

CAS 
PubMed 

Google Scholar 

Crombie, A. T. et al. Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc. Natl. Acad. Sci. 115, 13081–13086 (2018).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Eberl, F., Hammerbacher, A., Gershenzon, J. & Unsicker, S. B. Leaf rust infection reduces herbivore-induced volatile emission in black Poplar and attracts a generalist herbivore. New. Phytol. 220, 760–772 (2018).

CAS 
PubMed 

Google Scholar 

Schafer, H., Myronova, N. & Boden, R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61, 315–334 (2010).

CAS 
PubMed 

Google Scholar 

Bringel, F. & Couée, I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 06, 486 (2015).

Google Scholar 

Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).

ADS 
CAS 
PubMed 

Google Scholar 

Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).

PubMed 
PubMed Central 

Google Scholar 

Aydogan, E. L., Moser, G., Müller, C., Kämpfer, P. & Glaeser, S. P. Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Front. Microbiol. 9, 144 (2018).

PubMed 
PubMed Central 

Google Scholar 

Sangiorgio, D. et al. Host species and temperature drive Beech and Scots pine phyllosphere microbiota across European forests. Commun. Earth Environ. 5, 747 (2024).

Google Scholar 

Almario, J. et al. The leaf Microbiome of Arabidopsis displays reproducible dynamics and patterns throughout the growing season. mBio 13, e02825–e02821 (2022).

PubMed 
PubMed Central 

Google Scholar 

Gaube, P., Junker, R. R. & Keller, A. Changes amid constancy: flower and leaf microbiomes along land use gradients and between bioregions. Basic. Appl. Ecol. 50, 1–15 (2021).

Google Scholar 

Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems 2, e00087–e00017 (2017).

PubMed 
PubMed Central 

Google Scholar 

Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).

PubMed 
PubMed Central 

Google Scholar 

Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).

CAS 
PubMed 

Google Scholar 

Xiong, C. et al. Host selection shapes crop Microbiome assembly and network complexity. New. Phytol. 229, 1091–1104 (2021).

CAS 
PubMed 

Google Scholar 

Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a Neotropical forest. Proc. Natl. Acad. Sci. 111, 13715–13720 (2014).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).

PubMed 
PubMed Central 

Google Scholar 

Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).

CAS 
PubMed 

Google Scholar 

Lee, G. W., Chung, M. S., Kang, M., Chung, B. Y. & Lee, S. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma 253, 683–690 (2016).

CAS 
PubMed 

Google Scholar 

Burdon, R. C. F., Junker, R. R., Scofield, D. G. & Parachnowitsch, A. L. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile Linalool. Chemoecology 28, 11–19 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Riedlmeier, M. et al. Monoterpenes support systemic acquired resistance within and between plants. Plant. Cell. 29, 1440–1459 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Abanda-Nkpwatt, D., Musch, M., Tschiersch, J., Boettner, M. & Schwab, W. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57, 4025–4032 (2006).

CAS 
PubMed 

Google Scholar 

DiGuistini, S. et al. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc. Natl. Acad. Sci. 108, 2504–2509 (2011).

Scala, A. et al. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front. Plant. Sci. 4, 74 (2013).

ADS 
PubMed 
PubMed Central 

Google Scholar 

Shen, Q., Liu, L., Wang, L. & Wang, Q. Indole primes plant defense against necrotrophic fungal pathogen infection. PLOS ONE. 13, e0207607 (2018).

PubMed 
PubMed Central 

Google Scholar 

Gaube, P. et al. Inter- and intraspecific phytochemical variation correlate with epiphytic flower and leaf bacterial communities. Environ. Microbiol. 25, 1624–1643 (2023).

PubMed 

Google Scholar 

Junker, R. R. et al. Composition of epiphytic bacterial communities differs on petals and leaves. Plant. Biol. 13, 918–924 (2011).

CAS 
PubMed 

Google Scholar 

Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New. Phytol. 220, 739–749 (2018).

PubMed 

Google Scholar 

Fitzky, A. C. et al. Diversity and interrelations among the constitutive VOC emission blends of four broad-leaved tree species at seedling stage. Front. Plant. Sci. 12, 708711 (2021).

PubMed 
PubMed Central 

Google Scholar 

Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. New. Phytol. 183, 27–51 (2009).

CAS 
PubMed 

Google Scholar 

Carslaw, K. S. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chem. Phys. 10, 1701–1737 (2010).

ADS 
CAS 

Google Scholar 

Guenther, A. B. et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev. 5, 1471–1492 (2012).

ADS 

Google Scholar 

Matsunaga, S. N. et al. Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan. Chemosphere 87, 886–893 (2012).

ADS 
CAS 
PubMed 

Google Scholar 

Miyama, T. et al. Seasonal changes in interclone variation following Ozone exposure on three major gene pools: an analysis of Cryptomeria Japonica clones. Atmosphere 10, 643 (2019).

ADS 
CAS 

Google Scholar 

Hiura, T. et al. Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese Cedar. Sci. Rep. 11, 8307 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Dada, L. et al. Role of sesquiterpenes in biogenic new particle formation. Sci. Adv. 9, eadi5297 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Luo, Y. et al. Oxidation product characterization from ozonolysis of the diterpene ent-kaurene. Atmospheric Chem. Phys. 22, 5619–5637 (2022).

ADS 
CAS 

Google Scholar 

Forestry Agency of Japan. 2011 Forestry Census (Forestry Agency, 2011).

Tsumura, Y. et al. Genetic differentiation and evolutionary adaptation in cryptomeria Japonica. G3 Genes|Genomes|Genetics. 4, 2389–2402 (2014).

PubMed 
PubMed Central 

Google Scholar 

Moriguchi, N. et al. Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing. Heredity 123, 371–383 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Tsumura, Y. et al. Effects of the last glacial period on genetic diversity and genetic differentiation in Cryptomeria Japonica in East Asia. Tree Genet. Genomes. 16, 19 (2020).

Google Scholar 

Ohta, T., Niwa, S. & Hiura, T. Geographical variation in Japanese Cedar shapes soil nutrient dynamics and invertebrate community. Plant. Soil. 437, 355–373 (2019).

CAS 

Google Scholar 

Azuma, W. A., Kawai, K., Tanabe, T., Nakahata, R. & Hiura, T. Intraspecific variation in growth-related traits—from leaf to whole‐tree—in three provenances of Cryptomeria Japonica canopy trees grown in a common garden. Ecol. Res. 38, 83–97 (2023).

CAS 

Google Scholar 

Nakahata, R., Azuma, W. A., Tanabe, T., Kawai, K. & Hiura, T. Genotypic variations appear in fine root morphological traits of Cryptomeria Japonica trees grown in a common garden. Ecol. Res. 39, 717–729 (2024).

CAS 

Google Scholar 

Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 4, 170122 (2017).

PubMed 
PubMed Central 

Google Scholar 

Karger, D. et al. (ed, N.) Climatologies at high resolution for the earth’s land surface areas. EnviDat https://doi.org/10.16904/envidat.228 (2021).

Google Scholar 

Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. Global climate-related predictors at Kilometer resolution for the past and future. Earth Syst. Sci. Data. 14, 5573–5603 (2022).

ADS 

Google Scholar 

Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. CHELSA-BIOCLIM + A novel set of global climate-related predictors at kilometre-resolution. EnviDat https://doi.org/10.16904/envidat.332 (2022).

Google Scholar 

Kobayashi, T. Index of Fungi Inhabiting Woody Plants in Japan – Host, Distribution and Literature (Zenkoku-Noson-Kyoiku Kyokai, 2007).

Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

Google Scholar 

Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant Microbiome variation. PLOS Biol. 14, e1002352 (2016).

PubMed 
PubMed Central 

Google Scholar 

Bálint, M. et al. Host genotype shapes the foliar fungal Microbiome of Balsam Poplar (Populus Balsamifera). PLoS ONE. 8, e53987 (2013).

ADS 
PubMed 
PubMed Central 

Google Scholar 

Coince, A. et al. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS ONE. 9, e100668 (2014).

ADS 
PubMed 
PubMed Central 

Google Scholar 

Fukasawa, Y. & Matsuoka, S. Communities of wood-inhabiting fungi in dead pine logs along a geographical gradient in Japan. Fungal Ecol. 18, 75–82 (2015).

Google Scholar 

Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

PubMed 

Google Scholar 

Junker, R. R., He, X., Otto, J. C., Ruiz-Hernández, V. & Hanusch, M. Divergent assembly processes? A comparison of the plant and soil Microbiome with plant communities in a glacier forefield. FEMS Microbiol. Ecol. 97, fiab135 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nicolas, F. et al. Home-field advantage of litter decomposition: from the phyllosphere to the soil. New. Phytol. 231, 1353–1358 (2021).

Google Scholar 

Martin, D. M., Gershenzon, J. & Bohlmann, J. Induction of volatile terpene biosynthesis and diurnal emission by Methyl jasmonate in foliage of Norway Spruce. Plant. Physiol. 132, 1586–1599 (2003).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Lee, J. H. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 19, 391–396 (2009).

CAS 
PubMed 

Google Scholar 

Pieterse, C. M. J., Poelman, E. H., Van Wees, S. C. M. & Dicke, M. Induced plant responses to microbes and insects. Front. Plant. Sci. 4, 475 (2013).

PubMed 
PubMed Central 

Google Scholar 

Gupta, R. et al. Cytokinin drives assembly of the phyllosphere Microbiome and promotes disease resistance through structural and chemical cues. ISME J. 16, 122–137 (2022).

CAS 
PubMed 

Google Scholar 

Saito, T., Kusumoto, N. & Hiura, T. Relation of leaf terpene contents to terpene emission profiles in Japanese Cedar (Cryptomeria japonica). Ecol. Res. 38, 74–82 (2023).

CAS 

Google Scholar 

Rodrigues, M. G. & Fonseca, Á. Molecular systematics of the dimorphic ascomycete genus Taphrina. Int. J. Syst. Evol. Microbiol. 53, 607–616 (2003).

CAS 
PubMed 

Google Scholar 

Tsai, I. J. et al. Comparative genomics of Taphrina fungi causing varying degrees of tumorous deformity in plants. Genome Biol. Evol. 6, 861–872 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Vacher, C. et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).

Google Scholar 

Peay, K. G., Bruns, T. D., Kennedy, P. G., Bergemann, S. E. & Garbelotto, M. A strong species–area relationship for eukaryotic soil microbes: Island size matters for ectomycorrhizal fungi. Ecol. Lett. 10, 470–480 (2007).

PubMed 

Google Scholar 

Van Der Gucht, K. et al. The power of species sorting: local factors drive bacterial community composition over a wide range of Spatial scales. Proc. Natl. Acad. Sci. 104, 20404–20409 (2007).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jumpponen, A. & Jones, K. L. Seasonally dynamic fungal communities in the Quercus Macrocarpa phyllosphere differ between urban and nonurban environments. New. Phytol. 186, 496–513 (2010).

CAS 
PubMed 

Google Scholar 

Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change. 5, 424–430 (2015).

ADS 

Google Scholar 

Intergovernmental Panel On Climate Change (Ipcc). Climate Change 2021 – the Physical Science Basis: Working Group I Contribution To the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2023). https://doi.org/10.1017/9781009157896

Tsumura, Y. Genetic structure and local adaptation in natural forests of Cryptomeria Japonica. Ecol. Res. 38, 64–73 (2023).

CAS 

Google Scholar 

Tian, X. et al. Template Preparation affects 16S rRNA high-throughput sequencing analysis of phyllosphere microbial communities. Front. Plant. Sci. 8, 1623 (2017).

PubMed 
PubMed Central 

Google Scholar 

Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods. 10, 999–1002 (2013).

CAS 
PubMed 

Google Scholar 

Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).

CAS 
PubMed 

Google Scholar 

Tedersoo, L. & Lindahl, B. Fungal identification biases in Microbiome projects. Environ. Microbiol. Rep. 8, 774–779 (2016).

PubMed 

Google Scholar 

Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Callahan, B. J. et al. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

PubMed 
PubMed Central 

Google Scholar 

Robeson, M. S. et al. RESCRIPt: reproducible sequence taxonomy reference database management. PLOS Comput. Biol. 17, e1009581 (2021).

PubMed 
PubMed Central 

Google Scholar 

Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

PubMed 
PubMed Central 

Google Scholar 

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

Google Scholar 

Abarenkov, K. et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered. Nucleic Acids Res. 52, D791–D797 (2024).

CAS 
PubMed 

Google Scholar 

Ortega, J. & Helmig, D. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part A. Chemosphere 72, 343–364 (2008).

ADS 
CAS 
PubMed 

Google Scholar 

Gu, H., Liu, G., Wang, J., Aubry, A. F. & Arnold, M. E. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. Anal. Chem. 86, 8959–8966 (2014).

CAS 
PubMed 

Google Scholar 

Matsunaga, S. N. et al. Monoterpene and sesquiterpene emissions from Sugi (Cryptomeria japonica) based on a branch enclosure measurements. Atmospheric Pollut Res. 2, 16–23 (2011).

CAS 

Google Scholar 

R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024). https://www.R-project.org/

Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).

ADS 

Google Scholar 

McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of Microbiome census data. PLoS ONE. 8, e61217 (2013).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Oksanen, J. et al. vegan: Community Ecology Package, Version 2.6-8. https://cran.r-project.org/package=vegan (2024).

Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Montassier, E. et al. CLOUD: a non-parametric detection test for Microbiome outliers. Microbiome 6, 137 (2018).

PubMed 
PubMed Central 

Google Scholar 

Comments are closed.

Pin