Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005;10(5):236–42.
Google Scholar
Stuurman J, Hoballah ME, Broger L, Moore J, Basten C, Kuhlemeier C. Dissection of floral pollination syndromes in Petunia. Genetics. 2004;168(3):1585–99.
Google Scholar
Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res. 2007;51(6):675–83.
Google Scholar
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol. 2014;19:81–90.
Google Scholar
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, et al. Anthocyanins: from plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr. 2020;60(19):3352–65.
Google Scholar
Shi MZ, Xie DY. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol. 2014;8(1):47–60.
Google Scholar
Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005;42(2):218–35.
Google Scholar
Rowan DD, Cao M, Lin-Wang K, Cooney JM, Jensen DJ, Austin PT, et al. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol. 2009;182(1):102–15.
Google Scholar
Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, et al. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol. 2010;188(4):985–1000.
Google Scholar
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 2011;181(3):219–29.
Google Scholar
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. Embo J. 2000;19(22):6150–61.
Google Scholar
Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 2004;40(1):22–34.
Google Scholar
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 2007;50(4):660–77.
Google Scholar
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013;18(9):477–83.
Google Scholar
Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics. 2013;13(1):75–98.
Google Scholar
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81.
Google Scholar
LaFountain AM, Yuan YW. Repressors of anthocyanin biosynthesis. New Phytol. 2021;231(3):933–49.
Google Scholar
Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell. 2000;12(10):1863–78.
Google Scholar
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008;53(5):814–27.
Google Scholar
Li X, Teitgen AM, Shirani A, Ling J, Busta L, Cahoon RE, et al. Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat Plants. 2018;4(9):711–20.
Google Scholar
Li ZY, Ge XH. Unique chromosome behavior and genetic control in brassica x Orychophragmus wide hybrids: a review. Plant Cell Rep. 2007;26(6):701–10.
Google Scholar
Xu C, Huang Q, Ge X, Li Z. Phenotypic, cytogenetic, and molecular marker analysis of brassica napus introgressants derived from an intergeneric hybridization with orychophragmus. PLoS ONE. 2019;14(1):e0210518.
Google Scholar
Fu W, Chen D, Pan Q, Li F, Zhao Z, Ge X, et al. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. Plant Biotechnol J. 2018;16(2):367–80.
Google Scholar
Huang F, Chen P, Tang XY, Zhong T, Yang TH, Nwafor CC, et al. Genome assembly of the brassicaceae diploid Orychophragmus violaceus reveals complex whole-genome duplication and evolution of dihydroxy fatty acid metabolism. Plant Commun. 2023. https://doi.org/10.1016/j.xplc.2022.100432.
Google Scholar
Zhang K, Yang Y, Zhang X, Zhang L, Fu Y, Guo Z, et al. The genome of Orychophragmus violaceus provides genomic insights into the evolution of brassicaceae polyploidization and its distinct traits. Plant Commun. 2023;4(2):100431.
Google Scholar
Chen DZ, Yang YX, Niu GB, Shan XZ, Zhang XL, Jiang HM, et al. Metabolic and RNA sequencing analysis of cauliflower curds with different types of pigmentation. AOB Plants. 2022. https://doi.org/10.1093/aobpla/plac001.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, stringtie and ballgown. Nat Protoc. 2016;11(9):1650–67.
Google Scholar
Chen CJ, Wu Y, Li JW, Wang X, Zeng ZH, Xu J, et al. TBtools-II: a one for all, all for onebioinformatics platform for biological big-data mining. Mol Plant. 2023;16(11):1733–42.
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCscanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Google Scholar
Tan C, Chen H, Dai G, Liu Y, Shen W, Wang C, et al. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in Pak Choi (Brassica rapa L. ssp. chinensis). Planta. 2023;258(1):19.
Google Scholar
Chen D, Liu Y, Yin S, Qiu J, Jin Q, King GJ, Wang J, Ge X, Li Z. Alternatively spliced BnaPAP2.A7 isoforms play opposing roles in anthocyanin biosynthesis of brassica Napus L. Front Plant Sci. 2020;11:983.
Google Scholar
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015;20(3):176–85.
Google Scholar
Schuurink RC, Haring MA, Clark DG. Regulation of volatile benzenoid biosynthesis in Petunia flowers. Trends Plant Sci. 2006;11(1):20–5.
Google Scholar
Albert NW, Butelli E, Moss SMA, Piazza P, Waite CN, Schwinn KE, Davies KM, Martin C. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of. New Phytol. 2021;231(2):849–63.
Google Scholar
He Q, Wu J, Xue Y, Zhao W, Li R, Zhang L. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage (Brassica Rapa L). Hortic Res. 2020;7:97.
Google Scholar
Yan C, An G, Zhu T, Zhang W, Zhang L, Peng L, et al. Independent activation of the BoMYB2 gene leading to purple traits in brassica oleracea. Theor Appl Genet. 2019;132(4):895–906.
Google Scholar
Ye SH, Hua SJ, Ma TT, Ma XW, Chen YP, Wu LM, Zhao L, Yi B, Ma CZ, Tu JX, et al. Genetic and multi-omics analyses reveal BnaA07.PAP2 as the key gene conferring anthocyanin-based color in brassica Napus flowers. J Exp Bot. 2022;73(19):6630–45.
Google Scholar
Chen D, Jin Q, Pan J, Liu Y, Tang Y, E Y, et al. Fine mapping of genes controlling pigment accumulation in oilseed rape (Brassica napus L). Mol Breed. 2023;43(3):19.
Google Scholar
An G, Chen J. Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea. BMC Plant Biol. 2021;21(1):301.
Xu WJ, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol. 2014;202(1):132–44.
Google Scholar
Zhang K, Yang D, Hu Y, Njogu MK, Qian J, Jia L, Yan C, Li Z, Wang X, Wang L. Integrated analysis of transcriptome and metabolome reveals new insights into the formation of purple leaf veins and leaf edge cracks in brassica juncea. Plants. 2022;11(17):2229.
Google Scholar
Comments are closed.